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APPENDIX A

INDEPENDENCE, RANDOMIZATION, AND OUTLIERS

1. STATISTICAL INDEPENDENCE

1.1 Dunnett's Procedure and the t test with Bonferroni's adjustment are parametric procedures based on the
assumptions that (1) the observations within treatments are independent and normally distributed, and (2) that the
variance of the observations is homogeneous across all toxicant concentrations and the control. Of the three
possible departures from the assumptions, non-normality, heterogeneity of variance, and lack of independence,
those caused by lack of independence are the most difficult to resolve (see Scheffe, 1959). For toxicity data,
statistical independence means that given knowledge of the true mean for a given concentration or control,
knowledge of the error in any one actual observation would provide no information about the error in any other
observation. Lack of independence is difficult to assess and difficult to test for statistically. It may also have
serious effects on the true alpha or beta level. Therefore, it is of utmost importance to be aware of the need for
statistical independence between observations and to be constantly vigilant in avoiding any patterned experimental
procedure that might compromise independence. One of the best ways to help ensure independence is to follow
proper randomization procedures throughout the test.

2. RANDOMIZATION

2.1 Randomization of the distribution of test organisms among test chambers and the arrangement of treatments
and replicate chambers is an important part of conducting a valid test. The purpose of randomization is to avoid
situations where test organisms are placed serially into test chambers, or where all replicates for a test concentration
are located adjacent to one another, which could introduce bias into the test results.

2.2 An example of randomization of the distribution of test organisms among test chambers, and an example of
randomization of arrangement of treatments and replicate chambers are described using the Fathead Minnow Larval
Survival and Growth test. For the purpose of the example, the test design is as follows: five effluent concentrations
are tested in addition to the control. The effluent concentrations are as follows: 6.25%, 12.5%, 25.0%, 50.0%, and
100.0%. There are four replicate chambers per treatment. Each replicate chamber contains ten fish.

2.3 RANDOMIZATION OF FISH TO REPLICATE CHAMBERS EXAMPLE
2.3.1 Consider first the random assignment of the fish to the replicate chambers. The first step is to label each of
the replicate chambers with the control or effluent concentration and the replicate number. The next step is to

assign each replicate chamber four double-digit numbers. An example of this assignment is provided in Table A.1.
Note that the double digits 00 and 97 through 99 were not used.
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TABLE A.1. RANDOM ASSIGNMENT OF FISH TO REPLICATE CHAMBERS EXAMPLE
ASSIGNED NUMBERS FOR EACH REPLICATE CHAMBER

Assigned Numbers Replicate Chamber

01, 25, 49, 73 Control, replicate chamber 1
02, 26, 50, 74 Control, replicate chamber 2
03, 27, 51, 75 Control, replicate chamber 3
04, 28, 52, 76 Control, replicate chamber 4
05, 29, 53, 77 6.25% effluent, replicate chamber 1
06, 30, 54, 78 6.25% effluent, replicate chamber 2
07, 31, 55, 79 6.25% effluent, replicate chamber 3
08, 32, 56, 80 6.25% effluent, replicate chamber 4
09, 33, 57, 81 12.5% effluent, replicate chamber 1
10, 34, 58, 82 12.5% effluent, replicate chamber 2
11, 35, 59, 83 12.5% effluent, replicate chamber 3
12, 36, 60, 84 12.5% effluent, replicate chamber 4
13, 37, 61, 85 25.0% effluent, replicate chamber 1
14, 38, 62, 86 25.0% effluent, replicate chamber 2
15, 39, 63, 87 25.0% effluent, replicate chamber 3
16, 40, 64, 88 25.0% effluent, replicate chamber 4
17, 41, 65, 89 50.0% effluent, replicate chamber 1
18, 42, 66, 90 50.0% effluent, replicate chamber 2
19, 43, 67, 91 50.0% effluent, replicate chamber 3
20, 44, 68, 92 50.0% effluent, replicate chamber 4
21, 45, 69, 93 100.0% effluent, replicate chamber 1
22, 46, 70, 94 100.0% effluent, replicate chamber 2
23, 47, 71, 95 100.0% effluent, replicate chamber 3
24, 48, 72, 96 100.0% effluent, replicate chamber 4

2.3.2 The random numbers used to carry out the random assignment of fish to replicate chambers are provided in
Table A.2. The third step is to choose a starting position in Table A.2, and read the first double digit number. The
first number read identifies the replicate chamber for the first fish taken from the tank. For the example, the first
entry in row 2 was chosen as the starting position. The first number in this row is 37. According to Table A.1, this
number corresponds to replicate chamber 1 of the 25.0% effluent concentration. Thus, the first fish taken from the
tank is to be placed in replicate chamber 1 of the 25.0% effluent concentration.

2.3.3 The next step is to read the double digit number to the right of the first one. The second number identifies
the replicate chamber for the second fish taken from the tank. Continuing the example, the second number read in
row 2 of Table A.2 is 54. According to Table A.1, this number corresponds to replicate chamber 2 of the 6.25%
effluent concentration. Thus, the second fish taken from the tank is to be placed in replicate chamber 2 of the
6.25% effluent concentration.

247



TABLE A.2.
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2.3.4 Continue in this fashion until all the fish have been randomly assigned to a replicate chamber. In order to fill
each replicate chamber with ten fish, the assigned numbers will be used more than once. If a number is read from
the table that was not assigned to a replicate chamber, then ignore it and continue to the next number. If a replicate
chamber becomes filled and a number is read from the table that corresponds to it, then ignore that value and
continue to the next number. The first ten random assignments of fish to replicate chambers for the example are
summarized in Table A.3.

TABLE A.3. EXAMPLE OF RANDOM ASSIGNMENT OF FIRST TEN FISH TO REPLICATE

CHAMBERS

Fish Assignment

First fish taken from tank 25.0% effluent, replicate chamber 1
Second fish taken from tank 6.25% effluent, replicate chamber 2
Third fish taken from tank 50.0% effluent, replicate chamber 4
Fourth fish taken from tank 100.0% effluent, replicate chamber 4
Fifth fish taken from tank 6.25% effluent, replicate chamber 1
Sixth fish taken from tank 25.0% effluent, replicate chamber 4
Seventh  fish taken from tank 50.0% effluent, replicate chamber 1
Eighth fish taken from tank 100.0% effluent, replicate chamber 3
Ninth fish taken from tank 50.0% effluent, replicate chamber 2
Tenth fish taken from tank 100.0% effluent,  replicate chamber 4

2.3.5 Four double-digit numbers were assigned to each replicate chamber (instead of one, two, or three double-
digit numbers) in order to make efficient use of the random number table (Table A.2). To illustrate, consider the
assignment of only one double-digit number to each replicate chamber: the first column of assigned numbers in
Table A.1. Whenever the numbers 00 and 25 through 99 are read from Table A.2, they will be disregarded and the
next number will be read.

2.4 RANDOMIZATION OF REPLICATE CHAMBERS TO POSITIONS EXAMPLE
2.4.1 Next consider the random assignment of the 24 replicate chambers to positions within the water bath (or

equivalent). Assume that the replicate chambers are to be positioned in a four row by six column rectangular array.
The first step is to label the positions in the water bath. Table A.4 provides an example layout.

TABLE A4 RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS: EXAMPLE
LABELING THE POSITIONS WITHIN THE WATER BATH

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
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2.4.2 The second step is to assign each of the 24 positions four double-digit numbers. An example of this
assignment is provided in Table A.5. Note that the double digits 00 and 97 through 99 were not used.

TABLE A'S. RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS: EXAMPLE
ASSIGNED NUMBERS FOR EACH POSITION

Assigned Numbers Position
01, 25, 49,73 1
02, 26, 50, 74 2
03, 27, 51,75 3
04, 28, 52,76 4
05, 29, 53,77 5
06, 30, 54, 78 6
07, 31, 55,79 7
08, 32, 56, 80 8
09, 33, 57, 81 9
10, 34, 58, 82 10
11, 35, 59, 83 11
12, 36, 60, 84 12
13, 37, 61, 85 13
14, 38, 62, 86 14
15, 39, 63, 87 15
16, 40, 64, 88 16
17, 41, 65, 89 17
18, 42, 66, 90 18
19, 43, 67, 91 19
20, 44, 68, 92 20
21, 45, 69, 93 21
22, 46, 70, 94 22
23, 47, 71, 95 23
24, 48, 72, 96 24

2.4.3 The random numbers used to carry out the random assignment of replicate chambers to positions are
provided in Table A.2. The third step is to choose a starting position in Table A.2, and read the first double-digit
number. The first number read identifies the position for the first replicate chamber of the control. For the
example, the first entry in row 10 of Table A.2 was chosen as the starting position. The first number in this row was
73. According to Table A.5, this number corresponds to position 1. Thus, the first replicate chamber for the control
will be placed in position 1.

2.4.4 The next step is to read the double-digit number to the right of the first one. The second number identifies
the position for the second replicate chamber of the control. Continuing the example, the second number read in
row 10 of Table A.2 is 79. According to Table A.5, this number corresponds to position 7. Thus, the second
replicate chamber for the control will be placed in position 7.

2.4.5 Continue in this fashion until all the replicate chambers have been assigned to a position. The first four
numbers read will identify the positions for the control replicate chambers, the second four numbers read will
identify the positions for the lowest effluent concentration replicate chambers, and so on. If a number is read from
the table that was not assigned to a position, then ignore that value and continue to the next number. If a number is
repeated in Table A.2, then ignore the repeats and continue to the next number. The complete randomization of
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replicate chambers to positions for the example is displayed in Table A.6.

TABLE A.6. RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS:
EXAMPLE ASSIGNMENT OF ALL 24 POSITIONS

Control 100.0% 6.25% 6.25% 6.25% 12.5%

Control 12.5% Control 25.0% 12.5% 25.0%

100.0% 50.0% 100.0% Control 100.0% 25.0%
50.0% 50.0% 25.0% 50.0% 12.5% 6.25%

2.4.6 Four double-digit numbers were assigned to each position (instead of one, two, or three) in order to make
efficient use of the random number table (Table A.2). To illustrate, consider the assignment of only one double-
digit number to each position: the first column of assigned numbers in Table A.5. Whenever the numbers 00 and
25 through 99 are read from Table A.2, they will be disregarded and the next number will be read.

3. OUTLIERS

3.1 An outlier is an inconsistent or questionable data point that appears unrepresentative of the general trend
exhibited by the majority of the data. Outliers may be detected by tabulation of the data, plotting, and by an
analysis of the residuals. An explanation should be sought for any questionable data points. Without an
explanation, data points should be discarded only with extreme caution. If there is no explanation, the analysis
should be performed both with and without the outlier, and the results of both analyses should be reported.

3.2 Gentleman-Wilk's A statistic gives a test for the condition that the extreme observation may be considered an
outlier. For a discussion of this, and other techniques for evaluating outliers, see Draper and John (1981).
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APPENDIX B

VALIDATING NORMALITY AND HOMOGENEITY OF VARIANCE ASSUMPTIONS

1. INTRODUCTION

1.1 Dunnett's Procedure and the t test with Bonferroni's adjustment are parametric procedures based on the
assumptions that the observations within treatments are independent and normally distributed, and that the variance
of the observations is homogeneous across all toxicant concentrations and the control. These assumptions should be
checked prior to using these tests, to determine if they have been met. Tests for validating the assumptions are
provided in the following discussion. If the tests fail (if the data do not meet the assumptions), a nonparametric
procedure such as Steel's Many-one Rank Test may be more appropriate. However, the decision on whether to use
parametric or nonparametric tests may be a judgment call, and a statistician should be consulted in selecting the
analysis.

2. TEST FOR NORMAL DISTRIBUTION OF DATA
2.1 SHAPIRO-WILK'S TEST

2.1.1 One formal test for normality is the Shapiro-Wilk's Test (Conover, 1980). The test statistic is obtained by
dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric
estimate of variance. The calculated W must be greater than zero and less than or equal to one. This test is
recommended for a sample size of 50 or less. If the sample size is greater than 50, the Kolmogorov "D" statistic
(Stephens, 1974) is recommended. An example of the Shapiro-Wilk's test is provided below.

2.2 The example uses growth data from the Fathead Minnow Larval Survival and Growth Test. The same data are
used in the discussion of the homogeneity of variance determination in Paragraph 3 and Dunnett's Procedure in
Appendix C. The data, the mean and variance of the observations at each concentration, including the control, are
listed in Table B.1.

TABLE B.1. FATHEAD LARVAL, PIMEPHALES PROMELAS, LARVAL GROWTH DATA
(WEIGHT IN MG) FOR THE SHAPIRO-WILK'S TEST

NaPCP Concentration (ug/L)

Replicate Control 32 64 128 256
A 0.711 0.646 0.669 0.629 0.650
B 0.662 0.626 0.669 0.680 0.558
C 0.718 0.723 0.694 0.513 0.606
D 0.767 0.700 0.676 0.672 0.508
Mean( S_{'i) 0.714 0.674 0.677 0.624 0.580
S? 0.0018 0.0020 0.0001 0.0059 0.0037
i 1 2 3 4 5

2.3 The first step of the test for normality is to center the observations by subtracting the mean of all the
observations within a concentration from each observation in that concentration. The centered observations are
listed in Table B.2.
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TABLE B.2. EXAMPLE OF SHAPIRO-WILK'S TEST: CENTERED OBSERVATIONS

NaPCP Concentration (ng/L)

Replicate Control 32 64 128 256
A -0.003 -0.028 -0.008 0.005 0.070
B -0.052 -0.048 -0.008 0.056 -0.022
C 0.004 0.049 0.017 -0.111 0.026
D 0.053 0.026 -0.001 0.048 -0.072

2.4 Calculate the denominator, D, of the test statistic:
n )
D= (X%
i=1

Where: X, = the centered observations and X is the overall mean of the centered observations. For this set of data,

X =0,and D=0.0412.
2.5 Order the centered observations from smallest to largest.

XD < XP <, <X
where X® denotes the ith ordered observation. The ordered observations are listed in Table B.3.

TABLE B.3. EXAMPLE OF THE SHAPIRO-WILK'S TEST: ORDERED OBSERVATIONS

i xX® i xX®
1 -0.111 11 0.004
2 -0.072 12 0.005
3 -0.052 13 0.017
4 -0.048 14 0.026
5 -0.028 15 0.026
6 -0.022 16 0.048
7 -0.008 17 0.049
8 -0.008 18 0.053
9 -0.003 19 0.056
10 -0.001 20 0.070

2.6 From Table B.4, for the number of observations, n, obtain the coefficients a,, a,, ..., a,, where k is n/2 if n is
even, and (n-1)/2 if n is odd. For the data in this example, n = 20, k = 10. The a; values are listed in Table B.5.
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TABLE B.4. COEFFICIENTS FOR THE SHAPIRO-WILK'S TEST (Conover, 1980)

\ Number of Observations

i\" 2 3 4 5 6 7 8 9 10

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 - 0.0000 0.1667 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291
3 - - - 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141
4 - - - - - 0.0000 0.0561 0.0947 0.1224
5 - - - - - - - 0.0000 0.0399
\ Number of Observations

i\" 11 12 13 14 15 16 17 18 19 20

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3209 0.3273 0.3253 0.3232 0.3211

3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085

5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 - - 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 - - - - 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711

9 - - - - - - 0.0000 0.0163 0.0303 0.0422

—
(=)
'
'
'
'

- - - - 0.0000 0.0140
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23 24 25 26 27 28 29 30

=
3]
N
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0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870
0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415
0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
0.0696 0.0764 0.0923 0.0876 0.0923 0.0965 0.1002 0.1036
0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862
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11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 - - 0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 - - - - 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381
14 - - - - - - 0.0000 0.0084 0.0159 0.0227
15 - - - - - - - - 0.0000 0.0076
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TABLE B.4. COEFFICIENTS FOR THE SHAPIRO WILK'S TEST (CONTINUED)

Number of Observations
33 34 35 36 37 38 39 40

=
W
w
(9%)
3]

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098
5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1663 0.1686 0.1689 0.1691
7 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376
9 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237
10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870
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20 - - - - - - - - 0.0000 0.0049
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S O 0
e e
S O OO
S = D W
O 00 00 I
& o0 W o
e
[= e
—_— N W
W = =
AN 0 —

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 - - 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244
23 - - - - 0.0000 0.0039 0.0076 0.0111 0.0143 0.0174
24 - - - - - - 0.0000 0.0037 0.0071 0.0104
25 - - - - - - - - 0.0000 0.0035
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2.7 Compute the test statistic, W, as follows:

2
ai (X(nfiJrl) _X(i))]

M=

w- L
D

1

The differences, X®D - X are listed in Table B.5.

2.8 The decision rule for this test is to compare the critical value from Table B.6 to the computed W. If the
computed value is less than the critical value, conclude that the data are not normally distributed. For this example,
the critical value at a significance level of 0.01 and 20 observations (n) is 0.868. The calculated value, 0.959, is not
less than the critical value. Therefore, conclude that the data are normally distributed.

TABLE B.5. EXAMPLE OF THE SHAPIRO-WILK'S TEST: TABLE OF COEFFICIENTS AND

DIFFERENCES

i a, XD _ 50

1 0.4734 0.181 Xe . X0
2 0.3211 0.128 X o X@
3 0.2565 0.105 X . XO
4 0.2085 0.097 X X®
5 0.1686 0.076 Xt . X®
6 0.1334 0.048 X . X®
7 0.1013 0.034 XMoo X0
8 0.0711 0.025 X X®
9 0.0422 0.008 X . X

10 0.0140 0.005 LR G

2.9 In general, if the data fail the test for normality, a transformation such as to log values may normalize the data.
After transforming the data, repeat the Shapiro-Wilk's Test for normality.

2.10 KOLMOGOROV "D" TEST

2.10.1 A formal two-sided test for normality is the Kolmogorov "D" Test. The test statistic is calculated by
obtaining the difference between the cumulative distribution function estimated from the data and the standard
normal cumulative distribution function for each standardized observation. This test is recommended for a sample
size greater than 50. If the sample size is less than or equal to 50, then the Shapiro Wilk's Test is recommended. An
example of the Kolmogorov "D" test is provided below.

2.10.2 The example uses reproduction data from the daphnid, Ceriodaphnia dubia, Survival and Reproduction

Test. The observed data and the mean of the observations at each concentration, including the control, are listed in
Table B.7.

2.10.3 The first step of the test for normality is to center the observations by subtracting the mean of all the

observations within a concentration from each observation in that concentration. The centered observations for the
example are listed in Table B.8.
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TABLE B.6. QUANTILES OF THE SHAPIRO-WILK'S TEST STATISTIC (Conover, 1980)

n 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997
5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993
6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988
8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987
9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986
10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986
11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
12 0.805 0.828 0.859 0.883 0.943 0.973 0.979 0.984 0.986
13 0.814 0.837 0.866 0.889 0.945 0.974 0.979 0.984 0.986
14 0.825 0.846 0.874 0.895 0.947 0.975 0.980 0.984 0.986
15 0.835 0.855 0.881 0.901 0.950 0.975 0.980 0.984 0.987
16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987
17 0.851 0.869 0.892 0.910 0.954 0.977 0.981 0.985 0.987
18 0.858 0.874 0.897 0.914 0.956 0.978 0.982 0.986 0.988
19 0.863 0.879 0.901 0.917 0.957 0.978 0.982 0.986 0.988
20 0.868 0.884 0.905 0.920 0.959 0.979 0.983 0.986 0.988
21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989
22 0.878 0.892 0911 0.926 0.961 0.980 0.984 0.987 0.989
23 0.881 0.895 0.914 0.928 0.962 0.981 0.984 0.987 0.989
24 0.884 0.898 0.916 0.930 0.963 0.981 0.984 0.987 0.989
25 0.888 0.901 0.918 0.931 0.964 0.981 0.985 0.988 0.989
26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989
27 0.894 0.906 0.923 0.935 0.965 0.982 0.985 0.988 0.990
28 0.896 0.908 0.924 0.936 0.966 0.982 0.985 0.988 0.990
29 0.898 0.910 0.926 0.937 0.966 0.982 0.985 0.988 0.990
30 0.900 0.912 0.927 0.939 0.967 0.983 0.985 0.988 0.990
31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990
32 0.904 0.915 0.930 0.941 0.968 0.983 0.986 0.988 0.990
33 0.906 0.917 0.931 0.942 0.968 0.983 0.986 0.989 0.990
34 0.908 0.919 0.933 0.943 0.969 0.983 0.986 0.989 0.990
35 0.910 0.920 0.934 0.944 0.969 0.984 0.986 0.989 0.990
36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990
37 0.914 0.924 0.936 0.946 0.970 0.984 0.987 0.989 0.990
38 0.916 0.925 0.938 0.947 0.971 0.984 0.987 0.989 0.990
39 0.917 0.927 0.939 0.948 0.971 0.984 0.987 0.989 0.991
40 0.919 0.928 0.940 0.949 0.972 0.985 0.987 0.989 0.991
41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 0.922 0.930 0.942 0.951 0.972 0.985 0.987 0.989 0.991
43 0.923 0.932 0.943 0.951 0.973 0.985 0.987 0.990 0.991
44 0.924 0.933 0.944 0.952 0.973 0.985 0.987 0.990 0.991
45 0.926 0.934 0.945 0.953 0.973 0.985 0.988 0.990 0.991
46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
47 0.928 0.936 0.946 0.954 0.974 0.985 0.988 0.990 0.991
48 0.929 0.937 0.947 0.954 0.974 0.985 0.988 0.990 0.991
49 0.929 0.937 0.947 0.955 0.974 0.985 0.988 0.990 0.991
50 0.930 0.938 0.947 0.955 0.974 0.985 0.988 0.990 0.991
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TABLE B.7.

CERIODAPHNIA DUBIA REPRODUCTION DATA FOR THE KOLMOGOROV "D"

TEST
Effluent Concentration (%)
Replicate Control 1.56 3.12 6.25 12.5 25.0
1 27 32 39 27 19 10
2 30 35 30 34 25 13
3 29 32 33 36 26 7
4 31 26 33 34 17 7
5 16 18 36 31 16 7
6 15 29 33 27 21 10
7 18 27 33 33 23 10
8 17 16 27 31 15 16
9 14 35 38 33 18 12
10 27 13 44 31 10 2
Mean 22.4 26.3 34.6 31.7 19.0 9.4
TABLE B.8. CENTERED OBSERVATIONS FOR KOLMOGOROV “D” EXAMPLE
Effluent Concentration (%)
Replicate Control 1.56 3.12 6.25 12.5 25.0
1 4.6 5.7 4.4 -4.7 0.0 0.6
2 7.6 8.7 -4.6 2.3 6.0 3.6
3 6.6 5.7 -1.6 43 7.0 -2.4
4 8.6 -0.3 -1.6 2.3 -2.0 2.4
5 -6.4 -8.3 1.4 -0.7 -3.0 -2.4
6 -7.4 2.7 -1.6 -4.7 2.0 0.6
7 -4.4 0.7 -1.6 1.3 4.0 0.6
8 -5.4 -10.3 -7.6 -0.7 -4.0 6.6
9 -8.4 8.7 34 1.3 -1.0 2.6
10 4.6 -13.3 9.4 -0.7 -9.0 -7.4
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2.10.4 Order the centered observations from smallest to largest:
XD < XP <, <X

where X denotes the ith ordered observation, and n denotes the total number of centered observations. The
ordered observations for the example are listed in Table B.9.
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TABLE B.9. EXAMPLE CALCULATION OF THE KOLMOGOROV "D" STATISTIC

i X® z, D D+ D.-
1 -13.3 -2.51 0.0060 0.0107 0.0060
2 -10.3 -1.94 0.0262 0.0071 0.0095
3 -9.0 -1.70 0.0446 0.0054 0.0113
4 -8.4 -1.58 0.0571 0.0096 0.0071
5 -8.3 -1.57 0.0582 0.0251 -0.0085
6 -71.6 -1.43 0.0764 0.0236 -0.0069
7 7.4 -1.40 0.0808 0.0359 -0.0192
8 7.4 -1.40 0.0808 0.0525 -0.0359
9 -6.4 -1.21 0.1131 0.0369 -0.0202
10 -5.4 -1.02 0.1539 0.0128 0.0039
11 4.7 -0.89 0.1867 -0.0034 0.0200
12 4.7 -0.89 0.1867 0.0133 0.0034
13 -4.6 -0.87 0.1922 0.0245 -0.0078
14 4.4 -0.83 0.2033 0.0300 -0.0134
15 -4.0 -0.75 0.2266 0.0234 -0.0067
16 -3.0 -0.57 0.2843 -0.0176 0.0343
17 2.4 -0.45 0.3264 -0.0431 0.0597
18 2.4 -0.45 0.3264 -0.0264 0.0431
19 2.4 -0.45 0.3264 -0.0097 0.0264
20 2.0 -0.38 0.3520 -0.0187 0.0353
21 -1.6 -0.30 0.3821 -0.0321 0.0488
22 -1.6 -0.30 0.3821 -0.0154 0.0321
23 -1.6 -0.30 0.3821 0.0012 0.0154
24 -1.6 -0.30 0.3821 0.0179 -0.0012
25 -1.0 -0.19 0.4247 -0.0080 0.0247
26 -0.7 -0.13 0.4483 -0.0150 0.0316
27 -0.7 -0.13 0.4483 0.0017 0.0150
28 -0.7 -0.13 0.4483 0.0184 -0.0017
29 -0.3 -0.06 0.4761 0.0072 0.0094
30 0.0 0.00 0.5000 0.0000 0.0167
31 0.6 0.11 0.5438 -0.0271 0.0438
32 0.6 0.11 0.5438 -0.0105 0.0271
33 0.6 0.11 0.5438 0.0062 0.0105
34 0.7 0.13 0.5517 0.0150 0.0017
35 1.3 0.25 0.5987 -0.0154 0.0320
36 1.3 0.25 0.5987 0.0013 0.0154
37 1.4 0.26 0.6026 0.0141 0.0026
38 2.0 0.38 0.6480 -0.0147 0.0313
39 2.3 0.43 0.6664 -0.0164 0.0331
40 2.3 0.43 0.6664 0.0003 0.0164
41 2.6 0.49 0.6879 -0.0046 0.0212
42 2.7 0.51 0.6950 0.0050 0.0117
43 3.4 0.64 0.7389 -0.0222 0.0389
44 3.6 0.68 0.7517 -0.0184 0.0350
45 4.0 0.75 0.7734 -0.0234 0.0401
46 4.3 0.81 0.7910 -0.0243 0.0410
47 4.4 0.83 0.7967 -0.0134 0.0300
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TABLE B.9. EXAMPLE CALCULATION OF THE KOLMOGOROYV "D" STATISTIC (CONTINUED)

1 X® zZ; p; D+ D:-
48 4.6 0.87 0.8078 -0.0078 0.0245
49 4.6 0.87 0.8078 0.0089 0.0078
50 5.7 1.08 0.8599 -0.0266 0.0432
51 5.7 1.08 0.8599 -0.0099 0.0266
52 6.0 1.13 0.8708 -0.0041 0.0208
53 6.6 1.25 0.8944 -0.0111 0.0277
54 6.6 1.25 0.8944 0.0056 0.0111
55 7.0 1.32 0.9066 0.0101 0.0066
56 7.6 1.43 0.9236 0.0097 0.0069
57 8.6 1.62 0.9474 0.0026 0.0141
58 8.7 1.64 0.9495 0.0172 -0.0005
59 8.7 1.64 0.9495 0.0338 -0.0172
60 9.4 1.77 0.9616 0.0384 -0.0217

2.10.5 The next step is to standardize the ordered observations. Let z; denote the standardized value of the ith
ordered observation. Then,
xX® DY | X(i)]2

z, = — and s° =
! s (n-1)

For the example, s = 5.3, and the standardized observations are listed in Table B.9.

2.10.6 From Table B.10, obtain the value of the standard normal cumulative distribution function (standard normal
CDF) at z. Denote this value as p;,. Note that negative z are not listed in Table B.10. The value of the standard
normal CDF at a negative number is one minus the value of the standard normal CDF at the absolute value of that
number. For example, since the value of the standard normal CDF at 3.21 is 0.9993, the value of the standard
normal CDF at -3.21is 1 -0.9993 = 0.0007. The p; values for the example data are listed in Table B.9.
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TABLE B.10. P IS THE VALUE OF THE STANDARD NORMAL CUMULATIVE DISTRIBUTION

ATZ
z P z p z P z P
0.00 0.5000 0.41 0.6591 0.82 0.7939 1.23 0.8907
0.01 0.5040 0.42 0.6628 0.83 0.7967 1.24 0.8925
0.02 0.5080 0.43 0.6664 0.84 0.7995 1.25 0.8944
0.03 0.5120 0.44 0.6700 0.85 0.8023 1.26 0.8962
0.04 0.5160 0.45 0.6736 0.86 0.8051 1.27 0.8980
0.05 0.5199 0.46 0.6772 0.87 0.8078 1.28 0.8997
0.06 0.5239 0.47 0.6808 0.88 0.8106 1.29 0.9015
0.07 0.5279 0.48 0.6844 0.89 0.8133 1.30 0.9032
0.08 0.5319 0.49 0.6879 0.90 0.8159 1.31 0.9049
0.09 0.5359 0.50 0.6915 0.91 0.8186 1.32 0.9066
0.10 0.5398 0.51 0.6950 0.92 0.8212 1.33 0.9082
0.11 0.5438 0.52 0.6985 0.93 0.8238 1.34 0.9099
0.12 0.5478 0.53 0.7019 0.94 0.8264 1.35 09115
0.13 0.5517 0.54 0.7054 0.95 0.8289 1.36 0.9131
0.14 0.5557 0.55 0.7088 0.96 0.8315 1.37 0.9147
0.15 0.5596 0.56 0.7123 0.97 0.8340 1.38 0.9162
0.16 0.5636 0.57 0.7157 0.98 0.8365 1.39 0.9177
0.17 0.5675 0.58 0.7190 0.99 0.8389 1.40 0.9192
0.18 0.5714 0.59 0.7224 1.00 0.8413 1.41 0.9207
0.19 0.5753 0.60 0.7257 1.01 0.8438 1.42 0.9222
0.20 0.5793 0.61 0.7291 1.02 0.8461 1.43 0.9236
0.21 0.5832 0.62 0.7324 1.03 0.8485 1.44 0.9251
0.22 0.5871 0.63 0.7357 1.04 0.8508 1.45 0.9265
0.23 0.5910 0.64 0.7389 1.05 0.8531 1.46 0.9279
0.24 0.5948 0.65 0.7422 1.06 0.8554 1.47 0.9292
0.25 0.5987 0.66 0.7454 1.07 0.8577 1.48 0.9306
0.26 0.6026 0.67 0.7486 1.08 0.8599 1.49 0.9319
0.27 0.6064 0.68 0.7517 1.09 0.8621 1.50 0.9332
0.28 0.6103 0.69 0.7549 1.10 0.8643 1.51 0.9345
0.29 0.6141 0.70 0.7580 1.11 0.8665 1.52 0.9357
0.30 0.6179 0.71 0.7611 1.12 0.8686 1.53 0.9370
0.31 0.6217 0.72 0.7642 1.13 0.8708 1.54 0.9382
0.32 0.6255 0.73 0.7673 1.14 0.8729 1.55 0.9394
0.33 0.6293 0.74 0.7704 1.15 0.8749 1.56 0.9406
0.34 0.6331 0.75 0.7734 1.16 0.8770 1.57 0.9418
0.35 0.6368 0.76 0.7764 1.17 0.8790 1.58 0.9429
0.36 0.6406 0.77 0.7794 1.18 0.8810 1.59 0.9441
0.37 0.6443 0.78 0.7823 1.19 0.8830 1.60 0.9452
0.38 0.6480 0.79 0.7852 1.20 0.8849 1.61 0.9463
0.39 0.6517 0.80 0.7881 1.21 0.8869 1.62 0.9474
0.40 0.6554 0.81 0.7910 1.22 0.8888 1.63 0.9484
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TABLE B.10. P IS THE VALUE OF THE STANDARD NORMAL CUMULATIVE DISTRIBUTION

AT Z (CONTINUED)

z p z p z p z p
1.64 0.9495 205  0.9798 246 09931 2.87 0.9979
1.65 0.9505 206  0.9803 247 0.9932 2.88 0.9980
1.66 0.9515 207  0.9808 248  0.9934 2.89  0.9981
1.67 0.9525 2.08  0.9812 249 0.9936 290  0.9981
1.68 0.9535 209  0.9817 250 0.9938 2.91 0.9982
1.69 0.9545 210 0.9821 251 0.9940 2.92 0.9982
1.70 0.9554 211 0.9826 252 0.9941 2.93 0.9983
1.71 0.9564 212 0.9830 253 0.9943 294 0.9984
1.72 0.9573 213 0.9834 2.54  0.9945 2.95 0.9984
1.73 0.9582 2.14  0.9838 2.55  0.9946 296  0.9985
1.74 0.9591 215 0.9842 256 0.9948 2.97 0.9985
1.75 0.9599 2.16  0.9846 2.57  0.9949 2.98 0.9986
1.76 0.9608 2.17  0.9850 258 0.9951 299 0.9986
1.77 0.9616 2.18  0.9854 259  0.9952 3.00  0.9987
1.78 0.9625 2.19  0.9857 260  0.9953 3.01 0.9987
1.79 0.9633 220 0.9861 261 0.9955 3.02 0.9987
1.80 0.9641 221 0.9864 262 0.9956 3.03 0.9988
1.81 0.9649 222 0.9868 263  0.9957 3.04  0.9988
1.82 0.9656 223 0.9871 264  0.9959 3.05 0.9989
1.83 0.9664 224 0.9875 2.65  0.9960 3.06  0.9989
1.84 0.9671 225 0.9878 266 0.9961 3.07 0.9989
1.85 0.9678 226  0.9881 267 0.9962 3.08 0.9990
1.86 0.9686 227 0.9884 268  0.9963 3.09  0.9990
1.87 0.9693 228  0.9887 269  0.9964 310 0.9990
1.88 0.9699 229 0.9890 270 0.9965 3.11 0.9991
1.89 0.9706 230 0.9893 271 0.9966 3.12 0.9991
1.90 0.9713 231 0.9896 272 0.9967 3.13 0.9991
1.91 0.9719 232 0.9898 273 0.9968 314 0.9992
1.92 0.9726 233 0.9901 274 0.9969 3.15 0.9992
1.93 0.9732 234 0.9904 275 0.9970 3.16  0.9992
1.94 0.9738 235 0.9906 276 0.9971 317 0.9992
1.95 0.9744 236 0.9909 277 0.9972 3.18 0.9993
1.96 0.9750 237 09911 278 0.9973 319 0.9993
1.97 0.9756 238  0.9913 279 0.9974 320 0.9993
1.98 0.9761 239 0.9916 2.80  0.9974 321 0.9993
1.99 0.9767 240  0.9918 281 0.9975 3.22 0.9994
2.00 0.9772 241 0.9920 2.82  0.9976 3.23 0.9994
2.01 0.9778 242 0.9922 2.83  0.9977 324 0.9994
2.02 0.9783 243 0.9925 2.84  0.9977 3.25 0.9994
2.03 0.9788 244 09927 2.85  0.9978 326 0.9994
2.04 0.9793 245 0.9929 2.86  0.9979 3.27 0.9995
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TABLE B.10. P IS THE VALUE OF THE STANDARD NORMAL CUMULATIVE DISTRIBUTION

AT Z (CONTINUED)

z p z p z p z p
328 0.9995 346  0.9997 3.64  0.9999 382 0.9999
329 0.9995 347 0.9997 3.65  0.9999 3.83  0.9999
330 0.9995 348  0.0997 3.66  0.9999 3.84  0.9999
331 0.9995 349 0.9998 367 0.9999 385 0.9999
332 0.9995 3.50  0.9998 3.68  0.9999 3.86  0.9999
333 0.9996 351 0.9998 369 0.9999 3.87  0.9999
334 0.9996 352 0.9998 370 0.9999 3.88  0.9999
335 0.9996 353 0.9998 371 0.9999 389 0.9999
336 0.9996 3.54  0.9998 372 0.9999 390 1.0000
337 0.9996 355 0.9998 373 0.9999 391 1.0000
338 0.9996 3.56  0.9998 374 0.9999 392 1.0000
339 0.9997 357 0.9998 375 0.9999 393 1.0000
340  0.9997 3.58  0.9998 376 0.9999 3.94  1.0000
341 0.9997 3.59  0.9998 377 0.9999 395 1.0000
342 0.9997 3.60  0.9998 378 0.9999 396 1.0000
343 0.9997 361 0.9998 379 0.9999 397 1.0000
344 0.9997 362 0.9999 3.80  0.9999 398  1.0000
345 0.9997 3.63  0.9999 3.81  0.9999 3.99  1.0000

2.10.7 Next, calculate the following differences for each ordered observation:

D+ = (i/n)-p;

D p, - [(i-1)/n]

The differences for the example are listed in Table B.9.

2.10.8 Obtain the maximum of the D+, and denote it as D+. Obtain the maximum of the D;-, and denote it as D-.
For the example, D+ = 0.0525, and D- = 0.0597.

2.10.9 Next, obtain the maximum of D+ and D-, and denote it as D. For the example, D = 0.0597.

2.10.10 The test statistic, D*, is calculated as follows:

0.85,
Vn

n

D" = D({/n-0.01+

For the example, D* = 0.4684.

2.10.11 The decision rule for the two tailed test is to compare the critical value from Table B.11 to the computed
D*. If the computed value is greater than the critical value, conclude that the data are not normally distributed. For
this example, the critical value at a significance level of 0.01 is 1.035. The calculated value, 0.4684, is not greater
than the critical value. Thus, the conclusion of the test is that the data are normally distributed.

2.10.12 1In general, if the data fail the test for normality, a transformation such as the log transformation may
normalize the data. After transforming the data, repeat the Kolmogorov "D" test for normality.
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TABLE B.11. CRITICAL VALUES FOR THE KOLMOGOROV "D" TEST

Alpha Critical
Level Value
0.010 1.035
0.025 0.955
0.050 0.895
0.100 0.819
0.150 0.775

3. TEST FOR HOMOGENEITY OF VARIANCE

3.1 For Dunnett's Procedure and the t test with Bonferroni's adjustment, the variances of the data obtained from
each toxicant concentration and the control are assumed to be equal. Bartlett's Test is a formal test of this
assumption. In using this test, it is assumed that the data are normally distributed.

3.2 The data used in this example are growth data from a Fathead Minnow Larval Survival and Growth Test, and
are the same data used in Appendices C and D. These data are listed in Table B.12, together with the calculated
variance for the control and each toxicant concentration.

TABLE B.12. FATHEAD LARVAL GROWTH DATA (WEIGHT IN MG) USED FOR BARTLETT'S
TEST FOR HOMOGENEITY OF VARIANCE

NaPCP Concentration (ug/L)

Replicate Control 32 64 128 256
A 0.711 0.646 0.669 0.629 0.650
B 0.662 0.626 0.669 0.680 0.558
C 0.718 0.723 0.694 0.513 0.606
D 0.767 0.700 0.676 0.672 0.508
Mean(ﬁ_(i) 0.714 0.674 0.677 0.624 0.580
S3 0.0018 0.0020 0.0001 0.0059 0.0037
I 1 2 3 4 5

3.3 The test statistic for Bartlett's Test (Snedecor and Cochran, 1980) is as follows:

P — P
[(XV)InS*-XV InS]]

B - il i=1
C

Where: V., = degrees of freedom for each toxicant concentration and control
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p = number of levels of toxicant concentration including the control

In = log,
i = 1,2,.., pwhere p is the number of concentrations
n, = the number of replicates for concentration i.
S 2

sy
gt = =

P

v,

LRNNON
sV, i

1

M~

C = 1+[3(p-DI''[

3.4 Since B is approximately distributed as chi-square with p - 1 degrees of freedom when the variances are equal,
the appropriate critical value is obtained from a table of the chi-square distribution for p - 1 degrees of freedom and
a significance level of 0.01. If B is less than the critical value then the variances are assumed to be equal.

3.5 For the data in this example, V,=3,p =35, s? = 0.0027, and C = 1.133. The calculated B value is:

(15)[1n(0.0027)] -3 §1n(sf)
B = i=1

1.133

15(-5.9145)-3(-32.4771)
1.133

=7.691

3.6 Since B is approximately distributed as chi-square with p - 1 degrees of freedom when the variances are equal,
the appropriate critical value for the test is 13.277 for a significance level of 0.01. Since B =7.691 is less than the
critical value of 13.277, conclude that the variances are not different.

4. TRANSFORMATIONS OF THE DATA

4.1 When the assumptions of normality and/or homogeneity of variance are not met, transformations of the data
may remedy the problem, so that the data can be analyzed by parametric procedures, rather than by nonparametric
technique such as Steel's Many-one Rank Test or Wilcoxon's Rank Sum Test. Examples of transformations include
log, square root, arc sine square root, and reciprocals. After the data have been transformed, Shapiro-Wilk's and
Bartlett's tests should be performed on the transformed observations to determine whether the assumptions of
normality and/or homogeneity of variance are met.

4.2 ARC SINE SQUARE ROOT TRANSFORMATION (USEPA, 1993)

4.2.1 For data consisting of proportions from a binomial (response/no response; live/dead) response variable, the
variance within the ith treatment is proportional to P; (1 - P;), where P, is the expected proportion for the treatment.
This clearly violates the homogeneity of variance assumption required by parametric procedures such as Dunnett's
Procedure or the t test with Bonferroni's adjustment, since the existence of a treatment effect implies different values
of P, for different treatments, i. Also, when the observed proportions are based on small samples, or when P, is

266



close to zero or one, the normality assumption may be invalid. The arc sine square root (arc siney/P) transformation
is commonly used for such data to stabilize the variance and satisfy the normality requirement.

4.2.2 Arc sine transformation consists of determining the angle (in radians) represented by a sine value. In the
case of arc sine square root transformation of mortality data, the proportion of dead (or affected) organisms is taken
as the sine value, the square root of the sine value is calculated, and the angle (in radians) for the square root of the
sine value is determined. Whenever the proportion dead is 0 or 1, a special modification of the arc sine square root
transformation must be used (Bartlett, 1937). An explanation of the arc sine square root transformation and the
modification is provided below.

4.2.3 Calculate the response proportion (RP) at each effluent concentration, where:
RP = (number of surviving or "unaffected" organisms)/(number exposed)
Example: If 12 of 20 animals in a given treatment replicate survive:

RP

12/20
= 0.60
4.2.4 Transform each RP to its arc sine square root, as follows:
4.2.4.1 For RPs greater than zero or less than one:
Angle (radians) = arc sine/RP
Example: If RP = 0.60:
Angle = arc siney/0.60
= arc sine 0.7746
=(.8861 radians
4.2.4.2 Modification of the arc sine square root when RP = 0:
Angle (in radians) = arc sine /1/4 N

Where: N = Number of animals/treatment replicate
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Example: If 20 animals are used:

Angle =arcsine 4/1/80

=arc sine 0.1118
=0.1120 radians
4.2.4.3 Modification of the arc sine square root when RP = 1.0:
Angle = 1.5708 radians - (radians for RP = 0)
Example: Using above value:
Angle =1.5708-0.1120

=1.4588 radians
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APPENDIX C

DUNNETT'S PROCEDURE

1. MANUAL CALCULATIONS

1.1 Dunnett's Procedure (Dunnett, 1955; Dunnett, 1964) is used to compare each concentration mean with the
control mean to decide if any of the concentrations differ from the control. This test has an overall error rate of
alpha, which accounts for the multiple comparisons with the control. It is based on the assumptions that the
observations are independent and normally distributed and that the variance of the observations is homogeneous
across all concentrations and control (see Appendix B for a discussion on validating the assumptions). Dunnett's
Procedure uses a pooled estimate of the variance, which is equal to the error value calculated in an analysis of
variance. Dunnett's Procedure can only be used when the same number of replicate test vessels have been used at
each concentration and the control. When this condition is not met, a t test with Bonferroni's adjustment is used
(see Appendix D).

1.2 The data used in this example are growth data from a Fathead Minnow Larval Survival and Growth Test, and

are the same data used in Appendices B and D. These data are listed in Table C.1.

TABLE C.1. FATHEAD MINNOW, PIMEPHALES PROMELAS, LARVAL GROWTH DATA
(WEIGHT IN MG) USED FOR DUNNETT'S PROCEDURE

NaPCP Concentration (ug/L)

Replicate Control 32 64 128 256
A 0.711 0.517 0.602 0.566 0.455
B 0.662 0.501 0.669 0.612 0.502
C 0.646 0.723 0.694 0.410 0.606
D 0.690 0.560 0.676 0.672 0.254
Mean(ﬁ_(i) 0.677 0.575 0.660 0.565 0.454
Total(T) 2.709 2.301 2.641 2.260 1.817

1.3 One way to obtain an estimate of the pooled variance is to construct an ANOVA table including all sums of
squares, using the following formulas:

Where: p = number of effluent concentrations including:

SST = L Y2-GYN

; Total Sum of Squares

Y2 2
SSB = El:Tz /m;=G*/N " Between Sum of Squares
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SSW = SST-SSB Within Sum of Squares

P
G = the grand total of all sample observations; G = YT,
i=1
T, = the total of the replicate measurements for concentration i
N = the total sample size; » ° zl_:"i
n; = the number of replicates for concentration i

=~
I

= the jth observation for concentration i

1.4 For the data in this example:

n, = n=n;=n,=n;=4
N= 20
T,= Y, +Y,+Y;;+Y ,,=2.709
T,= Y, +Y,+Y,,+Y, =2301
Ty= Y3+ Y, +Y 3 +Y 4, =2.641
T,= Yu+Yupt+tYs+Y ,,=2.260
Ts= Ys+Y,tY+Y,=1817
G= T, +T,+T;+T,+T;=11.728
SST = X Y*-G*/N
i
= 7.146 - (11.728)%/20
= 0.2687
SSB =

YT?%n,-G*N

Y4 (28.017 - 11.728)*/20

0.1270

SSW = SST-SSB

= 0.2687-0.1270

= 0.1417
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1.5 Summarize these data in the ANOVA table (Table C.2).

TABLE C.2. ANOVA TABLE FOR DUNNETT'S PROCEDURE

Source df Sum of Mean Square (MS)

Squares (SS) (SS/df)
Between p-1 SSB Sz = SSB/(p-1)
Within N-p SSW Sw = SSW/(N-p)
Total N-1 SST

1.6 Summarize data for ANOVA (Table C.3).

TABLE C.3. COMPLETED ANOVA TABLE FOR DUNNETT'S PROCEDURE

Source df SS Mean Square
Between 5 - 1= 4 0.1270 0.0318
Within 20 - 5= 15 0.1417 0.0094
Total 19 0.2687

1.7 To perform the individual comparisons, calculate the t statistic for each concentration and control combination,
as follows:

(?1 717,)
S /(1/n)+(1/n)

w

Where: Y;= mean for concentration i

=

, = mean for the control

S,, = square root of the within mean square

W

n, = number of replicates in the control

n; = number of replicates for concentration i.
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1.8 Table C.4 includes the calculated t values for each concentration and control combination.

TABLE C.4. CALCULATED T VALUES

NaPCP
Concentration i t,
(ng/L)
32 2 1.487
64 3 0.248
128 4 1.633
256 5 3.251

1.9 Since the purpose of the test is only to detect a decrease in growth from the control, a one-sided test is
appropriate. The critical value for the one-sided comparison (2.36), with an overall alpha level of 0.05, 15 degrees
of freedom and four concentrations excluding the control is read from the table of Dunnett's "T" values (Table C.5;
this table assumes an equal number of replicates in all treatment concentrations and the control). The mean weight
for concentration i is considered significantly less than the mean weight for the control if t, is greater than the critical
value. Since T; is greater than 2.36, the 256 pg/L concentration has significantly lower growth than the control.
Hence the NOEC and LOEC for growth are 128 pg/L and 256 pg/L, respectively.
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1.10 To quantify the sensitivity of the test, the minimum significant difference (MSD) may be calculated. The formula is
as follows:

MSD = d S, J(1n)) +(1/n)

Where: d = critical value for the Dunnett's Procedure
S, = the square root of the within mean square
n = the number of replicates at each concentration, assuming an equal number of replicates at all treatment
concentrations
n, = number of replicates in the control

For example:

MSD = 2.36(0.097)[3/(1/4)+(1/4)] = 2.36(0.097)(/2/4)

=2.36 (0.097)(0.707)
=0.162

1.11 For this set of data, the minimum difference between the control mean and a concentration mean that can be detected
as statistically significant is 0.087 mg. This represents a decrease in growth of 24% from the control.

1.11.1 If the data have not been transformed, the MSD (and the percent decrease from the control mean that it represents)
can be reported as is.

1.11.2 In the case where the data have been transformed, the MSD would be in transformed units. In this case carry out
the following conversion to determine the MSD in untransformed units.

1.11.2.1 Subtract the MSD from the transformed control mean. Call this difference D. Next, obtain untransformed values
for the control mean and the difference, D.

MSD, =control, - D,

Where: MSD, = the minimum significant difference for untransformed data
Control, = the untransformed control mean
D = the untransformed difference

u

1.11.2.2 Calculate the percent reduction from the control that MSD, represents as:

MSD
Percent Reduction = ———— x 100

Control
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1.11.3 An example of a conversion of the MSD to untransformed units, when the arc sine square root transformation was
used on the data, follows:

Step 1. Subtract the MSD from the transformed control mean. As an example, assume the data in Table C.1
were transformed by the arc sine square root transformation. Thus:

0.677 - 0.162=0.515

Step 2. Obtain untransformed values for the control mean (0.677) and the difference (0.515) obtained in Step
1 above.

[ Sine (0.677)> = 0.392
[ Sine (0.515)]> = 0.243

Step 3. The untransformed MSD (MSD,) is determined by subtracting the untransformed values obtained in
Step 2.

MSD, = 0.392-0.243 = 0.149
In this case, the MSD would represent a 38.0% decrease in survival from the control [(0.149/0.392)(100)].
2. COMPUTER CALCULATIONS

2.1 This computer program incorporates two analyses: an analysis of variance (ANOVA), and a multiple comparison of
treatment means with the control mean (Dunnett's Procedure). The ANOVA is used to obtain the error value. Dunnett's
Procedure indicates which toxicant concentration means (if any) are statistically different from the control mean at the 5%
level of significance. The program also provides the minimum difference between the control and treatment means that
could be detected as statistically significant, and tests the validity of the homogeneity of variance assumption by Bartlett's
Test. The multiple comparison is performed based on procedures described by Dunnett (1955).

2.2 The source code for the Dunnett's program is structured into a series of subroutines, controlled by a driver routine.
Each subroutine has a specific function in the Dunnett's Procedure, such as data input, transforming the data, testing for
equality of variances, computing p values, and calculating the one-way analysis of variance.

2.3 The program compares up to seven toxicant concentrations against the control, and can accommodate up to 50
replicates per concentration.

2.4 If the number of replicates at each toxicant concentration and control are not equal, a t test with Bonferroni's
adjustment is performed instead of Dunnett's Procedure (see Appendix D).

2.5 The program was written in IBM-PC FORTRAN by Computer Sciences Corporation, 26 W. Martin Luther King

Drive, Cincinnati, OH 45268. A compiled executable version of the program can be obtained from EMSL-Cincinnati by
sending a written request to EMSL at 3411 Church Street, Cincinnati, OH 45244.
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2.6 DATA INPUT AND OUTPUT

2.6.1 Reproduction data from a daphnid, Ceriodaphnia dubia, survival and reproduction test (Table C.6) are used to
illustrate the data input and output for this program.

TABLE C.6. SAMPLE DATA FOR DUNNETT'S PROGRAM CERIODAPHNIA DUBIA

REPRODUCTION DATA
Effluent Concentration (%)

Replicate Control 1.56 3.12 6.25 12.5
1 27 32 39 27 10
2 30 35 30 34 13
3 29 32 33 36 7
4 31 26 33 34 7
5 16 18 36 31 7
6 15 29 33 27 10
7 18 27 33 33 10
8 17 16 27 31 16
9 14 35 38 33 12
10 27 13 44 31 2

2.6.2 Data Input
2.6.2.1 When the program is entered, the user is asked to select the type of data to be entered:

1. Response proportions, like survival or fertilization proportions.
2. Counts and measurements, like offspring counts, cystocarp counts or weights.

2.6.2.2 After the type of data is chosen, the user has the following options:

1. Create a data file

2. Edit a data file

3. Perform analysis on existing data set
4. Stop

2.6.2.3 When Option 1 (Create a data file) is selected for counts and measurements, the program prompts the user for the
following information:

1. Number of concentrations, including control
For each concentration:
- number of observations
- data for each observation

2.6.2.4 After the data have been entered, the user may save the file on a disk, and the program returns to the menu (see
below).

2.6.2.5 Sample data input is shown in Figure C.1.
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EMSL Cincinnati Dunnett Software
Version 1.5

1) Create a data file

2) Edit a data file

3) Per f orm ANOVA on exi sting data
4) St op

Your choice ? 1

Nunber of groups, including control ? 5
Nurmber of observations for group 1 ? 10

Enter the data for group 1 one observation at a tine.

NO 1?7 27
NO. 2?7 30
NO 3?7 29
NO. 4? 31
NO 5?7 16
NO. 6?7 15
NO 7?7 18
NO. 8?7 17
NO 9?7 14
NO. 10?7 27

Nurmber of observations for group 2 ? 10

Do you wish to save the data on disk ?y

Disk file for output ? cerio

Figure C.1. Sample Data Input for Dunnett's Program for Reproduction Data from Table C.6.
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2.6.3 Program Output

2.6.3.1 When Option 3 (Perform analysis on existing data set) is selected from the menu, the user is asked to select the
transformation desired, and indicate whether they expect the means of the test groups to be less or greater than the mean for
the control group (see Figure C.2).

2.6.3.2 Summary statistics (Figure C.3) for the raw and transformed data, if applicable, the ANOVA table, results of
Bartlett's Test, the results of the multiple comparison procedure and the minimum detectable difference are included in the
program output.
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EMSL Cincinnati Dunnett Software

Version 1.5
1) Create a data file
2) Edit a data file
3) Perform analysis on existing data set
4) Stop

Your choice ? 3

File name ? cerio

Available Transformations

1) no transform
2) square root
3) logl0

Your choice ? 1

Dunnett's test as implemented in this program is
a one-sided test. You must specify the direction
the test is to be run; that is, do you expect the
means for the test groups to be less than or
greater than the mean for the control group mean.

Direction for Dunnett's test : L=less than, G=greater than ? L

Figure C.2. Example of Choosing Option 3 from the Menu of the Dunnett Program.
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Ceriodaphnia Reproduction Data from Table C.6

Sunmary Statistics and ANOVA

Transformati on = None
Group n Mean s. d. CV%
1 = control 10 22. 4000 6.9314 30.9
2 10 26. 3000 8. 0007 30.4
3 10 34. 6000 4.8351 14.0
4 10 31. 7000 2.9458 9.3
5* 10 9. 4000 3. 8930 41. 4

*) the mean for this group is significantly less than the control
mean at al pha = 0.05 (1-sided) by Dunnett's test

M ni mum det ect abl e difference for Dunnett's test = -5.628560
This difference corresponds to -25.13 percent of control

Bet ween concentrations
Sum of squares = 3887.880000 with 4 degrees of freedom

Error mean square = 31.853333 with 45 degrees of freedom
Bartlett's test p-value for equality of variances = .029

Do you wish to restart the program ?

Figure C.3. Example of Program Output for the Dunnett's Program Using the Reproduction Data from Table C.6.
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APPENDIX D

T TEST WITH BONFERRONI'S ADJUSTMENT

1. The t test with Bonferroni's adjustment is used as an alternative to Dunnett's Procedure when the number of replicates is
not the same for all concentrations. This test sets an upper bound of alpha on the overall error rate, in contrast to Dunnett's
Procedure, for which the overall error rate is fixed at alpha. Thus, Dunnett's Procedure is a more powerful test.

2. The t test with Bonferroni's adjustment is based on the same assumptions of normality and homogeneity of variance as
Dunnett's Procedure (see Appendix B for testing these assumptions), and, like Dunnett's Procedure, uses a pooled estimate
of the variance, which is equal to the error value calculated in an analysis of variance.

3. An example of the use of the t test with Bonferroni's adjustment is provided below. The data used in the example are
the same as in Appendix C, except that the third replicate from the 256 pg/L concentration is presumed to have been lost.
Thus, Dunnett's Procedure cannot be used. The weight data are presented in Table D.1.

TABLE D.1. FATHEAD MINNOW, PIMEPHALES PROMELAS, LARVAL GROWTH DATA
(WEIGHT IN MG) USED FOR THE T-TEST WITH BONFERRONI'S ADJUSTMENT

NaPCP Concentration (ng/L)

Replicate Control 32 64 128 256
A 0.711 0.517 0.602 0.566 0.455
B 0.662 0.501 0.669 0.612 0.502

C 0.646 0.723 0.694 0.410 (LOST)
D 0.690 0.560 0.676 0.672 0.254
Mean(ﬁ_() 0.677 0.575 0.660 0.565 0.404
Total(T) 2.709 2.301 2.641 2.260 1.211

3.1 One way to obtain an estimate of the pooled variance is to construct an ANOVA table including all sums of squares,
using the following formulas:

Where: p = number of effluent concentrations including the control

N = the total sample size; N =2Xn

i

i
n; = the number of replicates for concentration i

SST = X Y?-G*/N Total Sum of Squares
i
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SSB = XT?/n-G*N  Between Sum of Squares

SSW = SST-SSB Within Sum of Squares
P
Where: G = The grand total of all sample observations; G =XT,
i=1
T, = The total of the replicate measurements for concentration i
Y, = The jth observation for concentration i

3.2 For the data in this example:
n, = n=n;=n,=4

= Y, tY,tY ,t+Y ,,=2.709
Yy + Yy +Y 5+ Y, =2301
Y+ Y, +Y s+ Y, =2.641
= Y+ Yot Y t+Y ., =2260
Yo+ Yo +Y g +Y,=1211
T, +T,+T,+T,+T,=11.122

[N}

I

e B e
I

[

Q
I

SSB = XT%n,~G*N

= 6.668-(11.122)*/19

= 0.158

SST = L Y2-G*N

/)

= 6.779-(11.122)¥19

= 0.269

SSW = SST-SSB

282



0.269 - 0.158

0.111

3.3 Summarize these data in the ANOVA table (Table D.2):

TABLE D.2. ANOVA TABLE FOR BONFERRONI'S ADJUSTMENT

Source df Sum of Mean Square (MS)
Squares (SS) (SS/df)
Between p-1 SSB Sz = SSB/(p-1)
Within N-p SSW Se = SSW/(N-p)
Total N-1 SST

3.4 Summarize these data in the ANOVA table (Table D.3):

TABLE D.3. COMPLETED ANOVA TABLE FOR THE T-TEST WITH BONFERRONI'S ADJUSTMENT

Source df SS Mean Square
Between 5-1=4 0.158 0.0395
Within 19-5=14 0.111 0.0029
Total 18 0.269

3.5 To perform the individual comparisons, calculate the t statistic for each concentration and control combination, as
follows:

_ (171 _)7,')
S, /(1/n)+(1/n)

Where: S?i = mean for each concentration
\_{1 = mean for the control
S, = square root of the within mean square
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n, = number of replicates in the control.

n number of replicates for concentration i.

1

3.6 Table D.4 includes the calculated t values for each concentration and control combination.

TABLE D.4. CALCULATED T VALUES

NaPCP
Concentration 1 t,
(ug/L)
32 2 1.623
64 3 0.220
128 4 1.782
256 5 4.022

3.7 Since the purpose of the test is only to detect a decrease in growth from the control, a one-sided test is appropriate.
The critical value for the one-sided comparison (2.510), with an overall alpha level of 0.05, fourteen degrees of freedom
and four concentrations excluding the control, was obtained from Table D.5. The mean weight for concentration "i" is
considered significantly less than the mean weight for the control if t; is greater than the critical value. Since t; is greater
than 2.510, the 256 pg/L concentration has significantly lower growth than the control. Hence the NOEC and LOEC for

growth are 128 pg/L and 256 pg/L, respectively.
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APPENDIX E
STEEL'S MANY-ONE RANK TEST

1. Steel's Many-one Rank Test is a nonparametric test for comparing treatments with a control. This test is an alternative
to Dunnett's Procedure, and may be applied to data when the normality assumption has not been met. Steel's Test requires
equal variances across the treatments and the control, but it is thought to be fairly insensitive to deviations from this
condition (Steel, 1959). The tables for Steel's Test require an equal number of replicates at each concentration. If this is not
the case, use Wilcoxon's Rank Sum Test, with Bonferroni's adjustment (see Appendix F).

2. For an analysis using Steel's Test, for each control and concentration combination, combine the data and arrange the
observations in order of size from smallest to largest. Assign the ranks to the ordered observations (1 to the smallest, 2 to
the next smallest, etc.). If ties occur in the ranking, assign the average rank to the observation. (Extensive ties would
invalidate this procedure). The sum of the ranks within each concentration and within the control is then calculated. To
determine if the response in a concentration is significantly different from the response in the control, the minimum rank
sum for each concentration and control combination is compared to the significant values of rank sums given later in this
section. In this table, k equals the number of treatments excluding the control and n equals the number of replicates for
each concentration and the control.

3. An example of the use of this test is provided below. The test employs reproduction data from a Ceriodaphnia dubia
7-day, chronic test. The data are listed in Table E.1. Significant mortality was detected via Fisher's Exact Test in the 50%
effluent concentration. The data for this concentration is not included in the reproduction analysis.

TABLE E.1. EXAMPLE OF STEEL'S MANY-ONE RANK TEST: DATA FOR THE DAPHNID,
CERIODAPHNIA DUBIA, 7-DAY CHRONIC TEST

No.
Effluent Replicate Live
Concentration 1 2 3 4 5 6 7 8 9 10 Adults

Control 20 26 26 23 24 27 26 23 27 24 10
3% 13 15 14 13 23 26 0 25 26 27 9
6% 18 22 13 13 23 22 20 22 23 22 10
12% 14 22 20 23 20 23 25 24 25 21 10
25% 9 0 9 7 6 10 12 14 9 13 8
50% 0 0 0 0 0 0 0 0 0 0 0

4. For each control and concentration combination, combine the data and arrange the observations in order of size from
smallest to largest. Assign ranks (1, 2, 3,..., 16) to the ordered observations (1 to the smallest, 2 to the next smallest, etc.).
If ties occur in the ranking, assign the average rank to each tied observation.

5. An example of assigning ranks to the combined data for the control and 3% effluent concentration is given in Table E.2.

This ranking procedure is repeated for each control and concentration combination. The complete set of rankings is listed
in Table E.3. The ranks are then summed for each effluent concentration, as shown in Table E.4.
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TABLE E.2.

EXAMPLE OF STEEL'S MANY-ONE RANK TEST: ASSIGNING

RANKS TO THE CONTROL AND 3% EFFLUENT CONCENTRATION

Rank Number of Young Control or % Effluent
Produced
1 0 3
2.5 13 3
2.5 13 3
4 14 3
5 15 3
6 20 Control
8 23 Control
8 23 Control
8 23 3
10.5 24 Control
10.5 24 Control
12 25 3
15 26 Control
15 26 Control
15 26 Control
15 26 3
15 26 3
19 27 Control
19 27 Control
19 27 3
TABLE E.3. TABLE OF RANKS

Replicate Control Effluent Concentration (%)

(Organism) 3 12 25
1 20 (6,4.5,3,11) 13 (2.5) 18 (3) 14 (1) 9 (5
2 26 (15,17,17,17) 15 (5) 22 (7.5) 22 (6) 0 (1
3 26 (15,17,17,17) 14 4 13 (1.5) 20 (3) 9 (5
4 23 (8,11.5,8.5,12.5) 13 (2.5) 13 (1.5) 23 (8.9) 7 3)
5 24 (10.5,14.5,12,14.5) 23 (8) 23 (11.5) 20 (3) 6 (2)
6 27 (19,19.5,19.5,19.5) 26 (15) 22 (7.5) 23 (8.5) 10 (7)
7 26 (15,17,17,17) 0 (D 20 (4.5) 25 (14.5) 12 (8)
8 23 (8,11.5,8.5,12.5) 25 (12) 22 (7.5) 24 (12) 14 (10)
9 27 (19,19.5,19.5,19.5) 26 (15) 23 (11.5) 25 (14.5) 9 (5
10 24 (10.5,14.5,12,14.5) 27 (19) 22 (7.5) 21 (5) 13 (9)

! Control ranks are given in the order of the concentration with which they were ranked.
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TABLE E.4. RANK SUMS

Effluent Rank Sum
Concentration
(%)
3 84
6 64
12 76
25 55

6. For this set of data, determine if the reproduction in any of the effluent concentrations is significantly lower than the
reproduction by the control organisms. If this occurs, the rank sum at that concentration would be significantly lower than
the rank sum of the control. Thus, compare the rank sums for the reproduction of each of the various effluent
concentrations with some "minimum" or critical rank sum, at or below which the reproduction would be considered to be
significantly lower than the control. At a probability level of 0.05, the critical rank in a test with four concentrations and ten
replicates is 76 (see Table E.S , for R=4).

7. Comparing the rank sums in Table E.4 to the appropriate critical rank, the 6%, 12% and 25% effluent concentrations are

found to be significantly different from the control. Thus the NOEC and LOEC for reproduction are 3% and 6%,
respectively.
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TABLEE.5.  SIGNIFICANT VALUES OF RANK SUMS: JOINT CONFIDENCE COEFFICIENTS OF
0.95 (UPPER) and 0.99 (LOWER) FOR ONE-SIDED ALTERNATIVES (Steel, 1959)

k = number of treatments (excluding control)

n 2 3 4 5 6 7 8 9
4 11 10 10 10 10 -- -- --
5 18 17 17 16 16 16 16 15
15 -- -- -- -- -- -- --

6 27 26 25 25 24 24 24 23
23 22 21 21 -- -- -- --

7 37 36 35 35 34 34 33 33
32 31 30 30 29 29 29 29

8 49 48 47 46 46 45 45 44
43 42 41 40 40 40 39 39

9 63 62 61 60 59 59 58 58
56 55 54 53 52 52 51 51

10 79 77 76 75 74 74 73 72
71 69 68 67 66 66 65 65

11 97 95 93 92 91 90 90 &9
87 85 84 83 82 81 81 80

12 116 114 112 111 110 109 108 108
105 103 102 100 99 99 98 98

13 138 135 133 132 130 129 129 128
125 123 121 120 119 118 117 117

14 161 158 155 154 153 152 151 150
147 144 142 141 140 139 138 137

15 186 182 180 178 177 176 175 174
170 167 165 164 162 161 160 160

16 213 209 206 204 203 201 200 199
196 192 190 188 187 186 185 184

17 241 237 234 232 231 229 228 227
223 219 217 215 213 212 211 210

18 272 267 264 262 260 259 257 256
252 248 245 243 241 240 239 238

19 304 299 296 294 292 290 288 287
282 278 275 273 272 270 268 267

20 339 333 330 327 325 323 322 320
315 310 307 305 303 301 300 299
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APPENDIX F

WILCOXON RANK SUM TEST

1. Wilcoxon's Rank Sum Test is a nonparametric test, to be used as an alternative to Steel's Many-one Rank Test when the
number of replicates are not the same at each concentration. A Bonferroni's adjustment of the pairwise error rate for
comparison of each concentration versus the control is used to set an upper bound of alpha on the overall error rate, in
contrast to Steel's Many-one Rank Test, for which the overall error rate is fixed at alpha. Thus, Steel's Test is a more
powerful test.

2. An example of the use of the Wilcoxon Rank Sum Test is provided in Table F.1. The data used in the example are the
same as in Appendix E, except that two males are presumed to have occurred, one in the control and one in the 12%
effluent concentration. Thus, there is unequal replication for the reproduction analysis.

3. For each concentration and control combination, combine the data and arrange the values in order of size, from smallest
to largest. Assign ranks to the ordered observations (a rank of 1 to the smallest, 2 to the next smallest, etc.). If ties in rank
occur, assign the average rank to each tied observation.

TABLE F.1. EXAMPLE OF WILCOXON'S RANK SUM TEST: DATA FOR THE DAPHNID,
CERIODAPHNIA DUBIA, 7-DAY CHRONIC TEST

No.
Effluent Replicate Live
Concentration 1 2 3 4 5 6 7 8 9 10 Adults

Cont M 26 26 23 24 27 26 23 27 24 10

3% 13 15 14 13 23 26 0 25 26 27 9

6% 18 22 13 13 23 22 20 22 23 22 10

12% 14 22 20 23 M 23 25 24 25 21 10
25% 9 0 9 7 6 10 12 14 9 13 8
50% 0 0 0 0 0 0 0 0 0 0 0

4. An example of assigning ranks to the combined data for the control and 3% effluent concentration is given in Table F.2.
This ranking procedure is repeated for each of the three remaining control versus test concentration combinations. The
complete set of ranks is listed in Table F.3. The ranks are then summed for each effluent concentration, as shown in

Table F.4.

5. For this set of data, determine if the reproduction in any of the effluent concentrations is significantly lower than the
reproduction by the control organisms. If this occurs, the rank sum at that concentration would be significantly lower than
the rank sum for the control. Thus, compare the rank sums for the reproduction of each of the various effluent
concentrations with some "minimum" or critical rank sum, at or below which the reproduction would be considered to be
significantly lower than the control. At a probability level of 0.05, the critical rank in a test with four concentrations and
nine replicates in the control is 72 for those concentrations with ten replicates, and 60 for those concentrations with nine
replicates (see Table F.5, for K = 4).

6. Comparing the rank sums in Table F.4 to the appropriate critical rank, the 6%, 12% and 25% effluent concentrations are

found to be significantly different from the control. Thus, the NOEC and LOEC for reproduction are 3% and 6%,
respectively.
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TABLE F.2. EXAMPLE OF WILCOXON'S RANK SUM TEST: ASSIGNING
RANKS TO THE CONTROL AND EFFLUENT CONCENTRATIONS

Rank Number of Young Control or % Effluent
Produced

1 0 3
2.5 13 3
2.5 13 3

4 14 3

5 15 3

7 23 Control
7 23 Control
7 23 3
9.5 24 Control
9.5 24 Control
11 25 3

14 26 Control
14 26 Control
14 26 Control
14 26 3

14 26 3

18 27 Control
18 27 Control
18 27 3
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TABLE F.3. TABLE OF RANKS

Replicate Control' Effluent Concentration (%)
(Organism) 3 6 12 25
1 M 13 (2.5) 18 (3) 14 (1) 9 (5
2 26 (14,16,15,16) 15 (5) 22 (6.5) 22 (4) 0 (1)
3 26 (14,16,15,16) 14 4) 13 (1.5 20 (2) 9 (5
4 23 (7,10.5,6.5,11.5) 13 (2.5) 13 (1.5) 23 (6.5) 7 (3)
5 24 (9.5,13.5,10,13.5) 23 (7) 23 (10.5) M 6 (2)
6 27 (18,18.5,17.5,18.5) 26 (14) 22 (6.5) 23 (6.5) 10 (7)
7 26 (14,16,15,16) 0 (1) 20 (4) 25 (12.5) 12 (8)
8 23 (7,10.5,6.5,11.5) 25 (11) 22 (6.5) 24 (10) 14 (10)
9 27 (18,18.5,17.5,18.5) 26 (14) 23 (10.5) 25 (12.5) 9 (5
10 24 (9.5,13.5,10,13.5) 27 (18) 22 (6.5) 21 (3) 13 (9

! Control ranks are given in the order of the concentration with which they were ranked.

TABLE F.4. RANK SUMS

Effluent Rank Sum No. of Critical
Concentration Replicates Rank Sum
3 79 10 72
6 57 10 72
12 58 9 60
25 55 10 72
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TABLE F.5. CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH BONFERRONI'S
ADJUSTMENT OF ERROR RATE FOR COMPARISON OF "K" TREATMENTS VERSUS
A CONTROL FIVE PERCENT CRITICAL LEVEL (ONE-SIDED ALTERNATIVE:

TREATMENT CONTROL)
K No. Replicates No. of Replicates Per Effluent Concentration
in Control

3 4 5 6 7 8 9 10
1 3 6 10 16 23 30 39 49 59
4 6 11 17 24 32 41 51 62
5 7 12 19 26 34 44 54 66
6 8 13 20 28 36 46 57 69
7 8 14 21 29 39 49 60 72
8 9 15 23 31 41 51 63 72
9 10 16 24 33 43 54 66 79
10 10 17 26 35 45 56 69 82
2 3 -- -- 15 22 29 38 47 58
4 -- 10 16 23 31 40 49 60
5 6 11 17 24 33 42 52 63
6 7 12 18 26 34 44 55 66
7 7 13 20 27 36 46 57 69
8 8 14 21 29 38 49 60 72
9 8 14 22 31 40 51 62 75
10 9 15 23 32 42 53 65 78
3 -- -- -- 21 29 37 46 57

-- 10 16 22 30 39 48 59
-- 11 17 24 32 41 51 62
6 11 18 25 33 43 53 65
7 12 19 26 35 45 56 68
7 13 20 28 37 47 58 70
7 13 21 29 39 49 61 73
8 14 22 31 41 51 63 76

S O 03N N bW

[
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TABLE F.5. CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH
BONFERRONI'S ADJUSTMENT OF ERROR RATE FOR COMPARISON OF "K"
TREATMENTS VERSUS A CONTROL FIVE PERCENT CRITICAL LEVEL
(ONE-SIDED ALTERNATIVE: TREATMENT CONTROL) (CONTINUED)

K No. Replicates No. of Replicates Per Effluent Concentration
in Control
3 4 5 6 7 8 9 10
4 3 -- - -- 21 28 37 46 56
4 -- - 15 22 30 38 48 59
5 - 10 16 23 31 40 50 61
6 6 11 17 24 33 42 52 64
7 6 12 18 26 34 44 55 67
8 7 12 19 27 36 46 57 69
9 7 13 20 28 38 48 60 72
10 7 14 21 30 40 50 62 75
5 3 -- - -- - 28 36 46 56
4 -- - 15 22 29 38 48 58
5 - 10 16 23 31 40 50 61
6 -- 11 17 24 32 42 52 63
7 6 11 18 25 34 43 54 66
8 6 12 19 27 35 45 56 68
9 7 13 20 28 37 47 59 71
10 7 13 21 29 39 49 61 74
6 3 -- - -- - 28 36 45 56
4 -- - 15 21 29 38 47 58
5 -- 10 16 22 30 39 49 60
6 -- 11 16 24 32 41 51 63
7 6 11 17 25 33 43 54 65
8 6 12 18 26 35 45 56 68
9 6 12 19 27 37 47 58 70
10 7 13 20 29 38 49 60 73
7 3 -- - -- - -- 36 45 56
4 -- - -- 21 29 37 47 58
5 - - 15 22 30 39 49 60
6 - 10 16 23 32 41 51 62
7 -- 11 17 25 33 43 53 65
8 6 11 18 26 35 44 55 67
9 6 12 19 27 36 46 58 70
10 7 13 20 28 38 48 60 72
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TABLE F.5.

CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH

BONFERRONI'S ADJUSTMENT OF ERROR RATE FOR COMPARISON OF
"K" TREATMENTS VERSUS A CONTROL FIVE PERCENT CRITICAL

LEVEL (ONE-SIDED ALTERNATIVE: TREATMENT CONTROL)
(CONTINUED)

K No. Replicates No. of Replicate Per Effluent Concentration
in Control
3 4 5 6 7 8 9 10
8 3 - -- - -- -- 36 45 55
4 - -- - 21 29 37 47 57
5 - - 15 22 30 39 49 59
6 - 10 16 23 31 40 51 62
7 - 11 17 24 33 42 53 64
8 6 11 18 25 34 44 55 67
9 6 12 19 27 36 46 57 69
10 6 12 19 28 37 48 59 72
9 3 - -- - - - - 45 55
4 - -- - 21 28 37 46 57
5 - -- 15 22 30 39 48 59
6 - 10 16 23 31 40 50 62
7 - 10 17 24 33 42 52 64
8 - 11 18 25 34 44 55 66
9 6 11 18 26 35 46 57 69
10 6 12 19 28 37 47 59 71
10 3 - -- - -- -- -- 45 55
4 - -- - 21 28 37 46 57
5 - -- 15 22 29 38 48 59
6 - 10 16 23 31 40 50 6l
7 - 10 16 24 32 42 52 64
8 - 11 17 25 34 43 54 66
9 6 11 18 26 35 45 56 68
10 6 12 19 27 37 47 58 71
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